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Isls _Lud META are two distributed systems projects at Corne11 Univer-

sity. The Isis project, led by Ken Birman, has developed a new methodology,

virtual _ynchony, for writing robust distributed software. This approach

is directly supported by the Isis Toolkit, a programming system that is

distributed to over 300 academic and industrial sites. As the basic Isls

techniques have matured, we have focused increasingly on some of the re-

maining "hard problems _ of reliable distributed programming. Principally

these include high performance multicast, large scale applications, and wide

a_e_ networks. We are also developing several interesting &ppLications that

exploit the strengths of Isis, including _n NFS-compatible replicated file

system.

The META project, led by Keith MarzulIo, is about distributed control

in a soft real-time environment incorporating feedback. This domain en-

compasses examples as diverse as monitoring inventory and consumption on

f_:tory floor, and performing load-balancing on a distributed computing

system. One of the first uses of MBTA is for distributed application manage.

merit:, the tasks of configuring a distributed program, dynamically adapting

to failures, a_,d monitoring its performance.

This extide reports our recent progress and current plans. But first we

begin by explah_ng our approach to distributed computing, a philosophy

that we b_eve significantly distinguishes our work from that of others in

the field.

"This materiai is adapted from a short paper presented at the Workshop on Mission

Critical Operating Systems, Washington, Nov. 1989. This work was supported by the

Defense Advuced Research Projects Agency (DoD) under ARPA order 6037, Contract
N00140-gT-C-8904 and under DARPA/NASA subcontrlct NAG2-593 administered by

the NASA Ames Research Center. The views, opinions, and findings contained in this

report are those of &he a.thors and shoukl not be construed u an official Department of

Defense position, policy, or decision.
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Network transparency: Too much of a good thing?

Users of contemporary distributed computing systems rapidly discover how

similar such systems are to the timeshared machines of the 1970's: the

pervasive use of Unetwork transparency" techniques lets us largely ignore

the fact of distribution. Normally, this is a desirable property. For example,

the dominant distributed programming technology, remote procedure calls

(RPC), permits a program running on one machine to invoke a procedure

residing in some other program. Given adequate language support, an RPC

interface can hide many details of message-based interaction and connection

management from the user. The idea of transparency also extends to other

parts of a typical distributed system. Using a file system like NFS, a program

can operate on files that physically reside on a remote machine in the network

using the same interface as for local files.

Complete transparency is troubling, however when one considers the

many reasons that distributed computing shou/d be different from non-

distributed programming. Parallel computing is in many ways analogous to

distributed computing. Yet, whereas the effective use of parallel machines

has triggered a search for fundamentally new programming languages and

methodologies, this has not happened for distributed programs. If we are

building distributed systems using technologies that proved unsatisfactory

in parallel settings, is it not likely that our distributed systems are making

ineffective use of parallelism?

The requirements placed on a distributed application often go beyond

the exploitation of concurrency. In particular, one often wishes to monitor

and control a distributed computer system while it is running. Moreover,

a distributed system may need to remain operational in the presense of

partial failures. By this we mean situations where one of the machines

connected to a network fails or becomes partitioned from the others, while

the majority of the machines remain operational and must reconfigure and

continue executing. The complementary problem also arises, ofreintegrating

a recovered machine into an online system.

The Isis project is based on the premise that when we pretend that a

distributed system is really a timeshared system, or encourage the user to

program as if his or her application were the only process running on the

system, as with transactional RPC, we discard a powerful resource: the

fact of distribution itself. We lose the ability to employ a set of processes

in a coordinated, cooperative attack on a problem. "_Velose the ability to

apply highly adaptive, reconfigurable solutions to applications that must
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remain onlillein the presenseof failuresand recoveries.And, we make it

difficultto build a distributedsystem thatismore fault-tolerantand offers

higher performance than any of itscomponents. The IslsToolkit,and the

Meta system that we are now buildingon top of the Toolkitenvironment,

representa significantstep towards addressingthesesortsof issues.

The Isis Toolkit: Process groups and multicast

At the lowest level,the Islssystem provides a toolkitof distributedpro-

gramming techniques. This consistsof a layer of software to assistthe

programmer in buildingdistributedapplications.The toolkitisvery much

likean extension of the operating system, although implemented without

changes to the operating systems on which Islsruns.

Central to ISlSis the notion of a process group. These groups are a

lightweightprogramming construct:a singleprocesscan belong to arbitrar-

ily many groups, and there is minimal overhead in being a member of a

group. A process can dynamically join and leave groups, and groups can

span multiplemachines. Groups have a hierarchicalnamespace, much likea

filesystem namespace, and permit flexible,location-transparentaAdressing.

Islsprovidesmulticastand unicast(point-to-point)communication prim-

itivesthat are easy-to.useand flexibleto the demands of the programmer.

A multicastcan be directedto allmembers of a group, and zero or more

willrespond, depending on the needs of the particularapplication.

Concurrent multicastsand unicasts,dynamic group changes and failures

would seem to present a very complex, even daunting, execution environ-

ment. But in Islsallthese concurrent events appear to happen one-_-t-a-

time. We callthissimplifyingmodel t,/rtua/s!mchrony.

Virtual synchrony

Virtual syachrony isa general approach to solvingdistributedcomputing

problems. Derived in part from the statemachine approach (introduced

by Lamport and Schneider),virtualsynchrony permits the programmer to

design a distributedprogra_n forexecution in a simplifiedenvironment, in

which allprocessesappear to observeeventssimultaneouslyand thereforein

the same order.Events such as multicastand detectionoffailuresare atomic

in a virtuallysynchronous setting:allgroup members receivea message or

observe a failureifany does, and in the same consistentordering. The

synchronous abstractionis relaxed when the program isexecuted by Isls



using appUcation-specific knowledge. Isls has several multicast primitives

that differ in the kind of ordering they enforce on concurrent events. By

selecting the appropriate primitive, the programmer tells Isls what degree

of synchrony is needed for that part of their application.

Virtual synchrony permits the Isls programmer to work in an environ-

ment where many of the aspects that render distributed computing diffi-

cult do not arise, but the resulting program runs as asynchronousiy (and

fault.tolerantly) as may be desired, without compromising correctness. Vir-

tual synchrony has been exploited throughout Isis, and leads to a simple

step-by-step programming style that even relatively unskilled programmers

can follow. Taken together with the wide range of tools represented in the

toolkit, the approach leads to a major jlunp in programmer productivity,

and major improvements in the robustness of distributed software.

Virtual synchrony has a well-developed theory, principally through the

work of Ph.D. graduate Frank Schmuck, that explains when low-cost asyn-

chronous techniques can be used to implement virtual synchrony. More

recently, we have explored the relationship between _obal correctness and

consistency properties in distributed systems and the ordering mechanisms

needed to achieve them; a technical report on this subject is listed below.

ISIS Toolkit: Problem-specific tools

Using the process group, multicast and unicast primitives, Isls provides a

variety of higher level tools that solve common subproblems in distributed

computing. For example, tools are provided to:

• Manage replicated data in memory or on a disk file

• Split a computation among several machines to exploit parallelism

• Coordinate an external action such as operating independent welding

units that are jointly welding an automobile body

• Synchronize concurrent actions such as when several processes share

a resource that only one can use at a time

• Monitor the status of a computation, process or computer, triggering

user-programmed actions should it fail

• Dynamically reconfigure to adapt after a failure or to integrate a re-

covered machine into an operational system, restarting services that
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should run at that location and bringing them up-to-date concerning

the active state of the system.

Tlds isjusta partialllst.Moreover, the toolsare integratedwith each other

in a way that makes iteasy to obtain consistentbehavior even when several

processesmust reactindependentlyto the same event.

Isis Version 1.3.1

The presentversionof the Islstoolkitcan be used from C, C++, and FOR-

TRAN. COMMON LISP interfacesare availableforseveralversionsof thislan-

guage. Islsruns on (and between) Sun, DEC, HP, Gould, NeXT and Apollo

equipment, on and between severalversionsofUNIx (includingMAcn, AIx,

HP-UX and UNICOS). Ports to DEC's VMS system and IBM's VM operat-

ing system are being considered,as isan interfaceto PCs running 0S/2.

The IslsToolkitisinincreasinglywide use,and our group has distributed

more than 300 copiesof the sourcefor Ism V1.3.1. Among the usersof the

current system are a number of Fortune 500 companies, severalindustrial

researchand prototypinggroups,and a number ofacademic researcherssad

instructors.Applicationsincludecontrollinga world-wide nuclear testban

and seismicmonitoring system, automating a factory-floorVLSI fabrication

system, disseminationof quotes and other real-timedata in brokerage set-

tings,and CAE/CAM systems. This diverseuser base has been a source of

invaluablefeedback.

Isls Version 2.0

Although Isis V1.3.1 has proved extremely robust, it is also sluggish and

hard to scale.IslsV2.0 willsoon be released,and overcomes theselimita-

tionswhile preservingthe robustnessofV1.3.1. With re_rd to performance,

V2.0 includesa new "bypass" communication protocolsuite,which permits

group communication at hardware speeds and enables the applicationde-

signerto introducenew multicasttransportalgorithms that exploitspecial

hardware or software features,or offerspecialpropertiessuch as real-time

delivery guarantees. This facility represents a major advance for our group,

and yields multicasts that are a match for alternative approaches that lack

Isls's atomicity and ordering guarantees. We feel that it overcomes the

widespread concern that fault-tolerance may simply be too costly a price
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to pay in "real" distributed systems. On the contrary, we now feel that

developers who build on a conventional software substrate are limiting their

options, working with unnecessarily complex message-at-a-time interfaces,

and not even g_ining a performance advantage by doing so.

With r_ard to scale, Isls V2.0 has two significant extensions that re-

spond to the most urgent needs identified by our users. One permits us to

connect applications on computers that don't run Isls to the Isls system

as remote ciient_. The interface is largeiy transparent to the application

designer and imposes little overhead. In the initial implementation of re-

mote clients, the remote Isls server may introduce a common failure point

for those computers that are its remote clients. We plan to increase the

fault-tolerance of this mechanism by permitting a remote client to switch

dynamically between Isls servers in case of failure. Nevertheless, the current

implementation is a good match for diskless workstations where a client's

remote disk server machine will also act as its Isls server process.

A second extension permits users to develop services that span wide-

area networks, residing on multiple IslS local networks and communicating

infrequently and asynchronously. For example, the large-scale seismology

system cited earlier uses this facility to keep track of the location of files

contain/ng signs] analysis output and to transfer these files from one Isis

system to another. The long-distance circuits are set up periodically, used

intensively, and then closed down to minimize communications costs.

Isis applications

In order to exercise and evaluate Isis, we have developed several fault-

tolerant applications. For example, we have built a distributed, fault-tolerant

version of the Usix program make, a main-memory distributed relational

database, and a multi-user spreadsheet that ca,, be used in & cooperative

manner. The first two of these applications are available as part of the Isis

V2.0 release, and the sprea_lsheet should be available by the end of 1990.

As part of his research, graduate student Alex Siegel has been designing

and building a highly-available file system called Deceit. This file system is

completely compatible with NF$, yet uses replication for improved response

time, higher availability and better scaling. Additionally, Deceit allows the

clients to specify properties of individual files in order to tune access to the

file. Currently, Deceit is running in a prototype form. It outperforms NFS

for many operations (notably read and write), and equals NFS for almost

all others operations.
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Using Isis for large scale applications

Many systems that support process groups assume that any single appli-

cation will use at most one group. Most Isis applications employ several

groups, and many use large hierarcldcally structured groups. This is ex-

plained by two factors. First, the trend toward modularity and object-

oriented programming in distributed systems leads many designers to think

of a process group as a form of distributed object. Even if the components

of the group are coded in different languages or have differing functionality,

this proves to be a simplifying and powerful structuring methodology. Since

a single process may make use of several services, each implemented using

such a process group, it is not uncommon for a single process to belong to

many groups.
A second factor is concerned with scale: Isls users are building sur-

prisingly large distributed applications, with groups which contain many

processes. It is unusual, and unwise, to multicast to the entire membership

of such a large group, except where widespread dissemination of information

is fundamental to the application itself. (This might be the case for a dis-

tributed network news application for example.) Designers of large systems

are thus lead to use a hierarchical structure in which a large group contains

a number of smaller groups. These smaller groups axe chosen in such a way

that most multicasts are destined to just one or two such groups.

Responding to these needs, Itobert Cooper has designed a suite of hier-

archical process group tools for Isls. These extend the basic tools to oper-

ate transparently on hierarchical groups, while augmenting the system with

mechanisms for reliably broadcasting to a large group that is maintained

hierarchically. A prototype of this facility is nearing completion.

High performance multicast

Looking to the future, we are exploring a number of theoretical and prac-

tical topics at the Toolkit level. The practical ones include adding a better

security mechanism to the system, extending Isis to support real-time pro-

tocols sad other special-purpose protocols, and integrating the system into

environments with parallel processors and extremely high speed communica-

tions protocols. Mechanisms for exploiting new operating systems, such as

Chorus and MACil, also represent an appealing direction. Graduate student

Patrick Stephenson has developed a class of extremely high performance



mldticast transport protocols suitable for use in the new Isis system, and

we plan to combine these in conjunction with an Isis service knowledge-

able about the communication topology of a local area network to develop

a suite of protocols that adapt themselves to the environment, for instance

exploiting Ethernet multicast when possible. We also hope to scale the size

of local area network on which Isws may run from the current limit of about

64 nodes up to hundreds or thousands of nodes, by introducing hierarchy at

the lowest levels of the Toolkit. The Toolkit architecture now seems fairly

stable, and is unlikely to change in visible ways as these extensions are made.

The META system

We mentioned above that Isis involves software at several levels. The toolkit

is a low-level technology, for use by programmers who actually code dis-

tributed programs. The META system is a collection of higher level tools

that aid in gluing together distributed programs into a reliable and adaptive

distributed system.

At the core of M8TA is a set of routines that support building reliable

reac_ve _rystem#, such as factory floor management systems, process con-

trol systems, and the control aspects of distributed applications. This level

provides a platform that can be used to monitor and control a distributed

system. Supported at this level are routines for instrumenting a distributed

system, monitoring for (perhaps complex) real-time conditions, and trigger-

ing actions on the controlled system.

There are two interfaces to the sensor/actuator platform. The low-level

interface permits users to define raw sensors and actuators, namely routines

(or variables) in user programs that can be queried to obtain the current sen-

sor value. At this level, META also supports an entity-relationship database

model describing sensors, their real-time properties, and the relationships

between them. Some raw sensors are predefined, such as the ones giving the

load on a computer or a process, whi/e others can be defined dynamically,

such as the length of a job queue maintained by some software component

of a larger system. Also supported are mechanisms for composing multiple

raw sensors into an abstract sensor. This is used to define such properties

as the average over a set of sensors, as well as to support sensors tolerant of

certain classes of failures.

The high-level interface to META is concerned with querying and mon-

itoring sensors. This supports a Prolog-like query language for identifying

individual sensors and sets of sensors satisfying user-defined predicxtes, as



well as a trigger language whereby the user can monitor for events of inter-

est, triggering appropriate actions when the event is detected. Both of these

interfaces are provided at the language level.

Built on the basic platform are a number of facilities for actually manag-

ing distributed applications. These help manage the allocation of system re-

sources, control the initiation, migration, and termination of programs, and

monitor the performance of the system. One interface to this distributed

system manager is accessed through a powerful graphical interface: using

this facility, one can achieve sophisticated fault-tolerant behavior without

writing a line of code.

Parts of META are currently available, while other parts are still being

bui/t. The M_.TA platform of sensors and actuators facilities, built by grad-

uate student Mark Wood, is provided in Isis V2.0, and the design of our

sensor query language is complete; an implementation is expected to be fin-

ished during 1990. Visitor Robbert Van llenesse has developed, on top of

M_.T^, a distributed application management program ca/led GARP, which

is a prototype graphical monitoring and control program. This system will

also be released sometime in 1990.

Support for the software

Although Isis is an academic project, it has acquired an increasingly large

commercial following. At present, all of the academically developed Isis

software is freely available in the public domain. We have made a major

effort to provide high quality support for this software, and believe we have

an excellent record of responsiveness--and of success in tracking down and

fixing bugs. On the other hand, this sort of commercial responsiveness is

making it increasingly difficult to maintain an active research program.

To address this problem, we have formed a company, Isls Distributed

Systems Incorporated, which is offering commercial services to companies

in need of customized software or consulting. Starting in 1990, these will

include support for the Isls Toolkit and products that extend the Toolkit

to respond to some of the specialized demands of our user group. For ex-

ample, IDS is now building a collection of general purpose software tools for

one client whose &pp]ication demands certain speci=dlzed components that

M_T^ currently lacks. In this particular case, the resulting software will

eventually enter the Isls public distributions. However, IDS is also engaged

in proprietary software development, and is intended to operate as an in-

creasingJy autonomous commercial operation, freeing our research group to
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focuson research.

Obtaining Isis

To obtain information about Isis, or a copy of the current software distri-

bution, write to: The Isis Project, Department of Computer Science, 4105

Upson Hall, Cornel/ University, NY 14853 (607-255--9198), or send elec-

tronic mail to isisQcs.coraell.edu. The group also maintains a mailing list

to which announcements of all new papers are sent.
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